Filtering and optimal control -Module I


Office hours:

https://uniroma1.zoom.us/j/83948979185?pwd=aXpsclhQMGs5VHNXV3Nva0VBdkY3Zz09

ID riunione: 839 4897 9185

Passcode: 746533


ORGANIZATION

All the official information:  https://corsidilaurea.uniroma1.it/user/13070


Academic year 2024-2025

The course, which gives 12 ECTS, is organized in the following 2 modules:

Module 1 (September 24 2024- December  2024), 6 ECTS:

Optimal Control (Prof. Daniela Iacoviello)

 Module 2 (February  - May, 2025), 6 ECTS: 

Filtering and Optimal Control - Module II  (Prof. Stefano Battilotti).

LESSONS

Lesson times

http://www.diag.uniroma1.it/automatica/?p=didattica/orari/2020-21&l=it

Lessons are in attendance 

Office hours

Send me an e-mail ( daniela.iacoviello@uniroma1.it

For online meeting:

Filtering and optimal control -Module I

https://uniroma1.zoom.us/j/83948979185?pwd=aXpsclhQMGs5VHNXV3Nva0VBdkY3Zz09

ID riunione: 839 4897 9185

Passcode: 746533

Classroom 2024-2025  (for being included in the mailing list and to share paper and useful documents)

https://classroom.google.com/c/NzEzNDg1MjYwMTg0?cjc=5a4awmm


PROGRAM and references

Academic year 2024-2025

Introduction to optimal Control and motivations

Definitions: local minimum, strict local minimum, global minimum.

Unconstrained optimization: first order necessary conditions; second order conditions

Weierstrass theorem

Constrained optimization; the Lagrangian; first order necessary conditions,

second order sufficient conditions; convexity hypothesis.

Calculus of variations; the Lagrange problem; the Euler equation; the augmented lagrangian;

necessary conditions; necessary and sufficient conditions

Calculus of variations and optimal control; the Hamiltonian function

The Pontryagin minimum principle; necessary conditions; necessary and sufficient conditions

The Hamilton –Jacobi – Bellman equation

The principle of optimality

The regulator problem: the optimal regulator problem on finite time interval; the optimal regulator problem

on infinite time interval; the steady state linear optimal regulator problem; the optimal tracking problem;

the optimal regulator problem with null final error; the optimal regulator problem with limited control

Singular solutions

The minimum time problem; the minimum time problem for steady state system

The armonic oscillator ; the double integrator

The LQG problem

 REFERENCES

Textbooks available in the DIAG library or on the web

 B.D.O.Anderson, J.B.Moore, Linear Optimal Control, Prentice Hall, 2000

 C. Bruni, G. Di Pillo, "Metodi variazionali per il controllo ottimo", Aracne, 2007

 L. Evans, An Introduction to Mathematical Optimal control Theory, Berkeley, 1983

 How, Jonathan. 16.323  Principles of Optimal Control, Spring 2008. 

 (MIT OpenCourseWare: Massachusetts Institute of Technology). License: Creative Commons BY-NC-SA.

 D. E. Kirk, "Optimal Control Theory: An Introduction, New York, NY: Dover, 2004 

 D. Liberzon, "Calculus of Variations and Optimal Control Theory: A Concise Introduction", Princeton University Press, 2011

 A. Locatelli, "Optimal Control: An Introduction", Birkhäuser, 2001Sc

*************************************************************************************************

MATERIAL

LECTURES 

SLIDES of the LECTURES

THESE SLIDES ARE NOT SUFFICIENT FOR THE EXAM

YOU MUST STUDY ON THE BOOKS

*************************************************************************************************

EXAMS

On INFOSTUD you find the dates of the exam  Filtering and Optimal Control with Prof. Battilotti (MODULE 2).

If you have attended Module 1 "Optimal Control" before 2023 you must send me an email; you will do the exam according to the rules of the year in which you attended the course.

To do the exam for the Module 1 you must fill the form that will be uploaded 

To do the exam with prof. Battilotti (Module 2) you must register on INFOSTUD.


Exam Module 1

October 17 2024  (EXTRAORDINARY EXAM SESSION  https://www.uniroma1.it/it/content/esami-di-profitto )  

room A7 15:00 (written exam for the Students that attended the course up to 2023): send an email to daniela.iacoviello@uniroma1.it no later than October 12

The Students of a.a. 2023-24 (that can do the exam according to the rules in  https://www.uniroma1.it/it/content/esami-di-profitto) must send me an email before October 15.